Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process on Undirected Graphs

نویسندگان

  • Krishnendu Chatterjee
  • Rasmus Ibsen-Jensen
  • Martin A. Nowak
چکیده

Evolutionary graph theory studies the evolutionary dynamics in a population structure given as a connected graph. Each node of the graph represents an individual of the population, and edges determine how offspring are placed. We consider the classical birth-death Moran process where there are two types of individuals, namely, the residents with fitness 1 and mutants with fitness r. The fitness indicates the reproductive strength. The evolutionary dynamics happens as follows: in the initial step, in a population of all resident individuals a mutant is introduced, and then at each step, an individual is chosen proportional to the fitness of its type to reproduce, and the offspring replaces a neighbor uniformly at random. The process stops when all individuals are either residents or mutants. The probability that all individuals in the end are mutants is called the fixation probability, which is a key factor in the rate of evolution. We consider the problem of approximating the fixation probability. The class of algorithms that is extremely relevant for approximation of the fixation probabilities is the Monte-Carlo simulation of the process. Previous results present a polynomial-time Monte-Carlo algorithm for undirected graphs when r is given in unary. First, we present a simple modification: instead of simulating each step, we discard ineffective steps, where no node changes type (i.e., either residents replace residents, or mutants replace mutants). Using the above simple modification and our result that the number of effective steps is concentrated around the expected number of effective steps, we present faster polynomial-time Monte-Carlo algorithms for undirected graphs. Our algorithms are always at least a factor O(n/ log n) faster as compared to the previous algorithms, where n is the number of nodes, and is polynomial even if r is given in binary. We also present lower bounds showing that the upper bound on the expected number of effective steps we present is asymptotically tight for undirected graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absorption Time of the Moran Process

The Moran process models the spread of mutations in populations on graphs. We investigate the absorption time of the process, which is the time taken for a mutation introduced at a randomly chosen vertex to either spread to the whole population, or to become extinct. It is known that the expected absorption time for an advantageous mutation is O(n) on an n-vertex undirected graph, which allows ...

متن کامل

Augmenting Undirected Edge Connectivity in Õ(n2) Time

We give improved randomized (Monte Carlo) algorithms for undirected edge splitting and edge connectivity augmentation problems. Our algorithms run in time ~ O(n2) on n-vertex graphs, making them an ~ (m=n) factor faster than the best known deterministic ones on m-edge graphs.

متن کامل

Fast and asymptotic computation of the fixation probability for Moran processes on graphs

Evolutionary dynamics has been classically studied for homogeneous populations, but now there is a growing interest in the non-homogeneous case. One of the most important models has been proposed in Lieberman et al. (2005), adapting to a weighted directed graph the process described in Moran (1958). The Markov chain associated with the graph can be modified by erasing all non-trivial loops in i...

متن کامل

Amplifiers and Suppressors of Selection for the Moran Process on Undirected Graphs

We consider the classic Moran process modeling the spread of genetic mutations, as extended to structured populations by Lieberman et al. (Nature, 2005). In this process, individuals are the vertices of a connected graph G. Initially, there is a single mutant vertex, chosen uniformly at random. In each step, a random vertex is selected for reproduction with a probability proportional to its fit...

متن کامل

Effect of Graph Structures on Selection for a Model of a Population on an Undirected Graph

This research focuses on analyzing selection amplifiers in population genetics. Since the structure of a population graph can influence selection, this paper focuses on finding undirected graphs that can amplify selection. To clearly demonstrate the idea, the paper will briefly discuss the basic Moran model at first. Then it will analyze the star graph as an example of selection amplifiers that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017